393 research outputs found

    Privacy-preserving Cross-domain Routing Optimization -- A Cryptographic Approach

    Full text link
    Today's large-scale enterprise networks, data center networks, and wide area networks can be decomposed into multiple administrative or geographical domains. Domains may be owned by different administrative units or organizations. Hence protecting domain information is an important concern. Existing general-purpose Secure Multi-Party Computation (SMPC) methods that preserves privacy for domains are extremely slow for cross-domain routing problems. In this paper we present PYCRO, a cryptographic protocol specifically designed for privacy-preserving cross-domain routing optimization in Software Defined Networking (SDN) environments. PYCRO provides two fundamental routing functions, policy-compliant shortest path computing and bandwidth allocation, while ensuring strong protection for the private information of domains. We rigorously prove the privacy guarantee of our protocol. We have implemented a prototype system that runs PYCRO on servers in a campus network. Experimental results using real ISP network topologies show that PYCRO is very efficient in computation and communication costs

    Mechanical performance and fracture behavior of Fe₄₁Co₇Cr₁₅Mo₁₄Y₂C₁₅B₆ bulk metallic glass

    Get PDF
    The mechanical properties of a new Fe₄₁Co₇Cr₁₅Mo₁₄Y₂C₁₅B₆ bulk glassy alloy were studied by impact bending, compression, and hardness tests carried out at room temperature. The compressive fracture strength, elastic strain to fracture, Young’s modulus and Vickers hardness were measured to be 3.5 GPa, 1.5%, 265 GPa, and 1253 kg mm⁻², respectively. The fracture mode of the glassy alloy under uniaxial compression is different from those of other bulk metallic glasses in that this fracture mode causes the samples to be broken, in an exploding manner, into a large number of micrometer-scale pieces. The fracture mechanisms of this bulk glassy alloy under bending and uniaxial compression are discussed based on the observation of the fracture surfaces. Vickers indentation tests indicate that the structure of the glassy ingot may be inhomogeneous

    Development of Polyethylenimine (PEI)-impregnated mesoporous carbon spheres for low-concentration CO2 capture

    Get PDF
    A novel low-concentration CO2 capture material (PEI/MCS) was developed by loading polyethylenimine (PEI) over mesoporous carbon spheres (MCS) with high porosity. The effects of pore structure, PEI loading, capture temperature, and promoters on CO2 capture of PEI/MCS were studied. The MCS with perfect spherical morphology was successfully synthesized by a hard-template assisted reverse emulsion method. The pore structure of MCS was adjusted by tuning the ratio of silica to carbon (Si/C) in the precursors. With increasing the Si/C from 0.8 to 1.1, the pore volume of MCS increased from 1.25 to 2.68 cm3/g. The optimal PEI loadings depending on the pore volume of MCS were 45, 62.5, and 65 wt.% for MCS-0.8, MCS-1.1, and MCS-1.5, respectively. The highest CO2 capture capacity (3.22 mmol/g) was achieved on 62.5PEI/MCS-1.1 at CO2 partial pressure of 0.05 bar (5 vol.%, a typical concentration of the tail gas from natural gas power plant and natural gas processing plant) and temperature of 75 °C, outperforming most of the solid amine sorbents reported at similar condition. However, the cycling stability of PEI/MCS is poor at the capture-regeneration temperature of 75 °C. The promoters Span 80 and 1,2-epoxybutane did not show remarkable effect on the cycling stability of PEI/MCS at 75 °C. Decreasing the capture-regeneration temperature can significantly improve the stability of PEI/MCS and there is almost no CO2 capacity loss (regeneration >99.5 %) when the temperature decreased to 50 °C. As a result of high CO2 capacity and excellent regenerability and stability, PEI /MCS will be one of the ideal candidates for CO2 capture in the future.acceptedVersio

    Reprogramming of blood cells into induced pluripotent stem cells as a new cell source for cartilage repair

    Get PDF
    Characterization of hMSCs and hMSC-chondrogenic pellets. (a) Flow cytometric analysis of the hematopoietic markers (CD34, CD45) and MSC markers (CD73, CD105) in hMSCs. The proportion of CD73-expressing cells was 99.7 ± 0.63 %; The proportion of CD105-expressing cells was 98.7 ± 1.21 %. Values represent means ± SEM; n = 3. (b) Three-dimensional pellet culture of the hMSC-chondrogenic pellet. (c) Alcian blue staining and (d) toluidine blue staining of glycosaminoglycans and proteoglycans revealed the chondrocyte-type appearance in the hMSC-chondrogenic pellets. Scale bar = 100 μm. (e,f) Immunohistochemistry for type II and type X collagen. Scale bar = 100 μm. (TIF 8130 kb
    corecore